CONDUCTING REGIONAL ANALYSES WITH L-RAP

6-1 SEQUENCE OF COMPUTATIONAL PROCEDURES

When the L-RAP program starts (Screen Shot 6-1), a series of tabs are visible across the top of the screen. The L-RAP interface is designed to guide the user through the steps in the regional analysis by progressing from left to right through the various tabs, as follows:

- Control
- Data Management
- Data Filter
- Data Screening
- Regional Analysis
- Quantile Estimates
- L-Moment Calculator (Single Station Computations)

The procedures for working through the various steps in the analysis are described in detail in the following sections. It should be noted that the examples in the following sections are for multimonth precipitation. Similar procedures are applicable to other data series with minor changes to accommodate the type of data series.

6-2 CREATING A PROJECT FILE

A project file should be created that allows for easy access to data imported to the program and the program settings. The project file is created as follows:

- Click on the *File* icon on the L-RAP toolbar
- Click on the *Save As* command
- Navigate to the folder where the project file is to be stored, or create a folder using the normal Windows procedure for creating a folder
- Save the project file with a user-specified name (Screen Shot 6-2). The file will be stored with an RGA extension in a standard ASCII format. These files can be opened and viewed in any text editor, such as Notepad.

6-3 OPENING A PREVIOUSLY CREATED PROJECT FILE

If a project file has previously been created, it can be opened using standard Windows procedures, specifically:

- Click on the *File* icon on the L-RAP toolbar
- Click on the *Open* command
- Navigate to the folder where the project file is to located, highlight the desired project file and click the *Open* command; the file will automatically be loaded.

2	L-RAP					_ D X
Eil	e <u>E</u> d	lit <u>T</u> ools <u>H</u> elp				
	🖻 🖞	3 X 🔒 🖻 🖺 🕜				
Co	ntrol	Data Management Data Qu	ality Scan Data Filter Data	Screening Regional Analysis	Quantile Estimates L-Moment Calculator	
		· · · · ·			,	
P	oject	Title				
Se	elect /	Analysis Type Annual Maxima	Data	•		
P	roject	Settings				
	Meta	Data Units	Language on Outpu	It Reports		
	ΘE	nglish C International (SI) • English •	Espanol		
D	ata Ty	pe Label Precipitation (inches	3)	(For example; Precipitation	n, Flow Rate, etc)	
	Obse	rvational Period Corrections			Notes:	
Ιſ		Gage Type Code	Description	Adjustment Factor		
	•	DY	Daily	1.130		
		HR	Hourly	1.000		
		FP	Fischer Porter	1.000		
		SY	Synoptic	1.040		
	*					
	User	Defined Meta Data Fields	1			
		Field Name	Decimal Place	ces		
	•	USER 1		0		
		USER Z		0		
				0		
		UJLN 4		U		

L-RAP		- O X
File Edit Tools Help		
🗋 💕 🛃 👗 🔜 🛍 🔘 🗎		
Control Data Management D	Data Quality Scan Data Filter Data Screening Regional Analysis Quantile Estimates L-Moment Calculator	
	🛃 Save As 📃 🔜	
Project Title	🚱 💭 🗢 🕌 « Projects → LRAP → DataFilesAnnual 🗸 🍫 Search DataFilesAnnual 🔎	
Select Analysis Type Monthly		
Project Settings	Organize V New folder	
Meta Data Units	Documents Name Date modified Type	
English C Internat	Music 🗋 WhiskeyTownAnnual.RGA 1/14/2011 11:15 AM RGA File	
Data Type Label Precipitation	Pictures WhiskeyTownAnnualUpdated.RGA 7/12/2011 8:32 AM RGA File	
Observational Period Corre	Tideos	
Gage Type Code	al Hamazoun	
► DY	E	
HR	1 Computer	
FP	Local Disk (C:)	
SY	RECOVERY (D:)	
*	TreeAgent GoFle:	
User Defined Meta Data Fie	File name:	
Field Name	Save as type: L-RAP Data Files (*.RGA)	
USER 1		
USER 2	Hide Folders Save Cancel	
USER 3		
USER 4	0	

Screen Shot 6-2 – Saving the Project File

6-4 CONTROL TAB

The *Control* tab provides the first step in conducting the regional analysis. The *Control* screen has features that are used to identify: the preferred language for interaction with the program; the type of data series; and a means to provide any additional information that is required for the type of data series that has been selected.

Complete the *Control* screen as follows:

- Click on the *Language* radio button to set the desired language for the report output (English, Spanish).
- Identify the project by entering a title in the *Project Name* field
- Click on the *Analysis Type* List button to set the type of data analysis (Screen Shot 6-1)
- Enter the units associated with the data being analyzed. This label will appear on subsequent graphics and reports
- Fill out the data entry grid relating the gage type to the adjustment for the number of observational periods (Screen Shot 6-2). The data entry grid will be used to set the relationship between the type of instrumentation (gage type) and the adjustment for the number of observational periods
- Up to four user-defined metadata fields may be included in the analysis. The user defined fields are included on the Data Management tab for each station analyzed. Meta data fields can be defined at any time during the analysis.

6-5 DATA MANAGEMENT

The *Data Management* tab contains features for: importing data series; editing of data; and editing of station metadata. At the current time, importing of data is accomplished from Excel spreadsheets to provide a familiar, easily used format for data transferal. An alternative method of importing data would be to edit the project files with the RGA extension, which are ASCII formatted.

6-5.1 Excel Templates for Data Entry

Excel templates have been created for a variety of data series types for use in importing of data series and station metadata. Chapter 5 contains information about assembling datasets using Excel templates that are provided as part of L-RAP.

6-5.2 Importing Data

Station data are imported as follows:

- From the *Data Management* tab, click the *Import Data* menu and then *Import Excel*. (Screen Shot 6-3a)
- Navigate to the folder where the Excel data files are located for the stations of interest
- Select one or more Excel files by holding the control key and clicking the desired file names. (Screen Shot 6-3b)
- Click on the *Open* button to begin the process of importing station data
- Once the import is complete, the imported stations metadata will appear in the table at the bottom of the screen. (Screen Shot 6-3c)
- The Import ASCII option is used to import legacy data files. This feature should only be used if you need to import data files created with the DOS version of LRAP._____

2	a 🗴 🖬	🗈 😤 📃	Import Excel									
ntro	Data Ma	nagemen	Import ASCII	Data	Filter	Data Screen	ing Regi	ional Analysis	Quantile Estimates	L-Moment C	alculator	
Ed	it Station	Delete Sta	ation	_								
	Station	Name	Gage	State	Lat	Long	МАР	Elevation	Duplicate Gage	Region No.	Seasonality Mean Day	Se
	10		Type	1	1	1	1		ouge	110.	Mean bay	

Screen Shot 6-3a – Data Management Screen

Screen Shot 6-3b - Highlighted Files for Loading into L-RAP

Edit Tools H	lelp Import Data									
rol Data Manage	ement Data Quality Scan	Data Filter Data	Screening	Regional A	nalysis Quantile	Estimates L-M	oment Calculator			
Edit Station	Delete Station				-	1				
					1				1	
Station ID /	Sta Name	Gage Ty	ре	State	Lat	Long	Precip	Elevation	Gage Status	Regi
001	Almendral	Daily	•	Elqui	-29.983	-70.919	90.90	370	Included 💌	
002	Caren	Daily	-	Choapa	-30.855	-70.771	198.17	740	Included 🗾	
003	Cochihuaz	Daily	-	Elqui	-30.142	-70.405	107.90	1,560	Included 🗾	
004	Cogoti 18	Daily	-	Limari	-31.084	-70.950	191.00	840	Included 🗾	
005	Cogoti Embalse	Daily	-	Limari	-31.008	-71.086	178.20	740	Included 🗾	
006	Coiron	Daily	-	Choapa	-31.902	-70.771	328.10	840	Included 🗾	
007	Combarbala	Daily	_	Limari	-31.174	-71.001	218.80	870	Included 🗾	
800	Cuncumen	Daily	-	Choapa	-31.934	-70.613	268.90	1,100	Included 🔹	
009	EI Tome	Daily	-	LIMARI	-30.818	-70.971	168.50	420	Included 🔹	
010	El Trapiche	Daily	-	Elqui	-29.374	-71.118	50.60	300	Included 💌	
011	Huanta	Daily	-	Elqui	-29.848	-70.384	64.40	1,240	Included 🔹	
012	Hurtado	Daily	_	Limari	-30.287	-70.696	126.70	1,100	Included 🗾	
013	Juntas	Daily	_	ELQUI	-29.977	-70.095	113.60	2,150	Included 🗾	
014	La laguna Embalse	Daily	-	Elqui	-30.204	-70.042	161.70	3,160	Included 🗾	
015	La Ortiga	Daily	-	Elqui	-30.194	-70.384	160.80	1,560	Included 🗾	
016	La Placilla	Daily	-	Limari	-30.889	-71.308	227.60	600	Included 🗾	
017	La Serena	Daily	-	Elqui	-29.907	-71.256	88.00	15	Included 🔹	
018	La Torre	Daily	-	Limari	-30.617	-71.374	118.90	120	Included 🗾	
019	La Tranquilla	Daily	-	Choapa	-31.900	-70.671	261.30	1,000	Included 💌	
020	Las Breas	Daily	•	Limari	-30.370	-70.613	139.90	1,600	Included 💌	
020	Las Breas	Daily	•	Limari	-30.370	-70.613	139.90	1,600	Included 💌	
021	Las Burras	Daily	•	Choapa	-31.534	-70.821	214.80	1,150	Included 💌	
022	Las Ramadas	Daily	•	Limari	-31.085	-70.586	285.90	1,360	Included 💌	
023	Los Nichos	Daily	•	Elqui	-30.147	-70.498	146.60	1,330	Included -	
	1	1 -					1			

Screen Shot 6-3c - Data Management Screen Showing Stations Loaded into L-RAP

6-5.3 Adding New Stations to an Existing Project File

Adding new stations to an existing project file is accomplished as follows:

- Import the new stations using the importing procedures described in Section 6-5.2 above. The new stations will be added to the existing project file and will appear in the table at the bottom of the *Data Management* tab.
- Save the project file as described in Section 6-2.

6-5.4 Editing Data Series and Station Metadata

Station metadata and data series may be edited from the *Data Management* tab. Metadata can be changed by editing the data directly in the table at the bottom of the *Data Management* tab. Clicking on any of the column headings sorts the stations by the alpha-numeric values in that column. The data series can be edited as follows:

- Click on the row containing the Station of interest (Screen Shot 6-4a),
- Click on the *Edit Data* button and a new editing window will appear with the data series and data quality flags for the selected station (Screen Shot 6-4b)
- Make changes as needed and save the changes by clicking on the *Save/Close* button
- Edit another data series by highlighting another station, clicking on the *Edit Data* button, and repeating the editing procedure described above
- Complete the editing session by clicking on the *Save/Close* button on the *Station Editor* window.

In the process of forming homogeneous regions, reassignment of a station to a different region is accomplished by simply changing the region number for a given station. This is accomplished by editing the station metadata on the grid at the bottom of the Data Management tab (Screen Shot 6-4a).

🛃 L-R/	AP	Includes 10 10	100.00		1. 1	and a second		-		• X
File	Edit Tools H	elp Import Data								
		🖹 🕡 I								
Contro	Data Manage	ement Data Quality Scan Data	Filter Data Screeni	ng Regional Ar	alysis Quantile	Estimates L-M	oment Calculator			
	dit Station	Delete Station								
			1	1			Moon Ann			
	Station ID /	Sta Name	Gage Type	State	Lat	Long	Precip	Elevation	Gage Status	Regior
	001	Almendral	Daily -	Elqui	-29.983	-70.919	90.90	370	Included 💌	
	002	Caren	Daily -	Choapa	-30.855	-70.771	198.17	740	Included 🗾	
	003	Cochihuaz	Daily -	Elqui	-30.142	-70.405	107.90	1,560	Included 💌	
	004	Cogoti 18	Daily 💌	Limari	-31.084	-70.950	191.00	840	Included 💌	
	005	Cogoti Embalse	Daily -	Limari	-31.008	-71.086	178.20	740	Included 💌	
	006	Coiron	Daily 💌	Choapa	-31.902	-70.771	328.10	840	Included 🗾	
	007	Combarbala	Daily -	Limari	-31.174	-71.001	218.80	870	Included 💌	
	800	Cuncumen	Daily 💌	Choapa	-31.934	-70.613	268.90	1,100	Included 🗾	
	009	EI Tome	Daily 💌	LIMARI	-30.818	-70.971	168.50	420	Included 💌	
	010	El Trapiche	Daily 💌	Elqui	-29.374	-71.118	50.60	300	Included 💌	
	011	Huanta	Daily 💌	Elqui	-29.848	-70.384	64.40	1,240	Included 💌	
	012	Hurtado	Daily 💌	Limari	-30.287	-70.696	126.70	1,100	Included 💌	
	013	Juntas	Daily 💌	ELQUI	-29.977	-70.095	113.60	2,150	Included 🔹	
	014	La laguna Embalse	Daily 💌	Elqui	-30.204	-70.042	161.70	3,160	Included 🔹	
	015	La Ortiga	Daily 💌	Elqui	-30.194	-70.384	160.80	1,560	Included 💌	
	016	La Placilla	Daily 💌	Limari	-30.889	-71.308	227.60	600	Included 🔹	
	017	La Serena	Daily 💌	Elqui	-29.907	-71.256	88.00	15	Included 🔹	
	018	La Torre	Daily 💌	Limari	-30.617	-71.374	118.90	120	Included 🔹	
	019	La Tranquilla	Daily 💌	Choapa	-31.900	-70.671	261.30	1,000	Included 🔹	
	020	Las Breas	Daily 💌	Limari	-30.370	-70.613	139.90	1,600	Included 🔹	
	020	Las Breas	Daily -	Limari	-30.370	-70.613	139.90	1,600	Included 🔹	
	021	Las Burras	Daily 💌	Choapa	-31.534	-70.821	214.80	1,150	Included 🔹	
	022	Las Ramadas	Daily -	Limari	-31.085	-70.586	285.90	1,360	Included 🔹	
	023	Los Nichos	Daily 💌	Elqui	-30.147	-70.498	146.60	1,330	Included 🔹	•
1		1			• •					•

Shot 6-4a – Metadata Grid at the bottom of the Data Management Tab (Station 006 is selected for Editing)

🖹 Stat	ion: 006 -	Coiron							_	-						
Save/	Close Ca	ncel														
	Year	Jan	Jan Fg	Feb	Feb Fg	Mar	Mar Fg	Apr	Apr Fg	Мау	May Fg	Jun	Jun Fg	Jul	Jul Fg	Aı
	1971	-999.00	М	-9												
	1972	-999.00	М	-9												
	1973	-999.00	М	-9												
	1974	0.00	v	0.00	v	0.00	v	0.00	v	20.60	#	89.00	?	12.50	#	
	1975	0.00	v	0.00	v	0.00	v	0.00	v	64.50	#	0.00	v	133.50	#	
	1976	0.00	v	0.00	v	0.00	v	0.00	v	34.00	?	0.00	v	0.00	v	
	1977	0.00	v	0.00	v	0.00	v	0.00	v	22.00	?	63.50	#	279.00	?	
	1978	0.00	v	12.20	#	374.00	?									
	1979	0.00	v	0.00	v	0.00	v	6.50	?	6.50	?	0.00	v	138.50	#	
	1980	0.00	v	0.00	v	0.00	v	187.00	?	0.00	v	73.30	#	148.00	?	
	1981	0.00	v	0.00	v	0.00	v	0.00	v	131.50	#	21.00	?	24.00	?	
	1982	0.00	v	0.00	v	18.00	?	0.00	v	84.50	#	217.00	?	124.50	#	1
	1983	3.50	#	0.00	v	0.00	v	6.50	#	37.00	?	96.50	#	171.50	#	
	1984	0.00	v	0.00	v	3.00	?	0.00	v	25.30	#	12.00	?	402.00	?	
	1985	0.00	v	0.00	v	17.00	?	0.00	v	5.00	?	1.50	#	96.50	#	
	1986	0.00	v	0.00	v	0.00	v	1.00	?	143.50	#	88.10	#	3.00	?	
	1987	0.00	v	0.00	v	11.00	?	16.00	?	35.00	?	51.00	?	597.50	#	2
	1988	0.00	v	0.00	v	0.00	v	0.00	v	8.50	#	13.50	#	48.50	#	

Screen Shot 6-4b– Editing of Data Series for a Selected Station

6-6 DATA QUALITY SCANNING

The *Data Quality Scan* tab is used to check the station data for input errors. Error checking must be performed each time new data is imported into the program. The scan takes place automatically each time a project data file (RGA file) is opened. To quality check the data, perform the following steps.

- Click the *Data Quality Scan* tab. Click the *Run Data Quality Scan and Compute Station Circular Statistics* button. A report is automatically generated and appears in the text window on the *Data Quality Scan* Screen (Screen Shot 6-5).
- The error report should be scanned and all errors should be addressed through editing of the data series and station metadata (discussed in Section 6-5.4).

L-RAP	X
File Edit Tools Help	
Control Data Management Data Quality Scan Data Filter Data Screening Regional Analysis Quantile Estimates L-Moment Calculate	r
Run Data Quality Scan and	
Print Report Window	
	Â
REPORT FOR QUALITY CHECKING OF DATA	
***** 001 Almendral *****	
Year=1958 Month= 1 Invalid Value 1.000 for M Quality Flag	
OK - Quality Checked for Month 2	
OK - Quality Checked for Month 3	
OK - Quality Checked for Month 4	
OK - Quality Checked for Month 5	
OK - Quality Checked for Month 6	
OK - Quality Checked for Month 7	
07 mality (hasked for Month 9	
OK - Quality Checked for Month 6	
OK - Quality Checked for Month 9	
OK - Quality Checked for Month 10	
OK - Quality Checked for Month 11	
	*

Screen Shot 6-5 – Data Management Screen Showing Error Report for Station Data Series (An Input Error is noted for Station 001, Almendral)

6-7 DATA FILTERING

The *Data Filter* screen provides options for selecting regions and setting criteria for selecting sites/stations within the selected regions. Once the group of sites/stations is selected, that group is used in subsequent analyses for data screening and conducting regional analyses (Screen Shot 6-6).

L-RAP : ChileExampleData.RGA	***************************************	
File Edit Tools Help		
🗋 🖆 🦂 🖌 🖼 🖻 隆 🔘		
Control Data Management Data Quality Scan Dat	Filter Data Screening Regional Analysis Quantile Estin	nates L-Moment Calculator
Aggregate Data by Month Start Month Jul Number of Months to Aggregate (Include Start Month) Select Climatic Regions C Select Stations Based on:		Print Report Window
Region 1	Mean Annual Precip Min Non-Zero Record Length	USER 1 USER 3
Region 2 Region 3 Region 4 Region 4 Region 4	Min 0.00 Max 0.00	Min 0 Min 0 Max 0 Max 0
Region 6	Latitude (Decimal Degrees) Start/End Years	USER 2 USER 4
Select Regions	Min 0.0000 Start Year 1948 Max 0.0000 End Year 2004	Min 0 Min 0 Max 0 Max 0
Remove Duplicate Gages	Retrieve Selected Stations	

6-7.1 Sequence of Actions for Selecting Stations for Proposed Region

The sequence of actions for selecting stations is as follows:

- If monthly or multi-month data are to be analyzed, use the drop-down menu in the *Aggregate Data by Month* box and select the starting month and number of months for analysis. For all other data types, proceed to the next step to select regions
- Use check-boxes to select the regions of interest in the Select Climatic Regions box
- Click on the *Select Regions* button to create the listing of stations within the regions of interest, the list of potential stations will appear in the text window (Screen Shot 6-7a). By default, all stations in the selected regions are included in the analysis. The view window now displays all stations in the region along with L-moment statistics and discordancy measures.
- The user can now either proceed with the analysis of the stations in the selected regions or further filter the stations based on metadata fields.

Optionally Filter Stations based on Metadata Fields

- Set any desired station selection criteria, such as minimum record length, range of mean annual precipitation, etc. in the *Select Stations Based On* box.
- Click on *Retrieve Selected Stations* button to filter the stations in the selected regions based on the selected criteria, (Screen Shot 6-7b). The view window now displays the selected stations along with L-moment statistics and discordancy measures.

L-RAP : ChileExampleData.RGA	10.8.2	2.2.1	-				2.9.2	28	20 C		0.84	a	1.41		. O . X .
File Edit Tools Help															
	9														
Control Data Management	Data Quality Sca	an Data I	Filter Di	ata Screer	ing	Regiona	I Analysis	Quantile	Estimates	L-M	oment Ca	lculator			
Aggregate Data by Mont Start Month Number of Months to Aggrega (Include Start Month)	h Jul ie 3	•									Print	Report W	lindow		
Select Climatic Regions	Coloct Stations Ra	and on													
Select Climatic Regions	Include Gage Type	(e)													
	Select All Me Daily Hourly	eter Types	Mean A	Innual Preci In Indiax	0.	00	Min Non-Zero R	5	gth	USER 1 - Min Max	<	0	USER 3		
Region 6	Fischer Porter		Latitude	(Decimal D	egrees)		Start/End Years			USER 2 -			USER 4		
Select Regions	Synoptic		Ξ,	lin lax	0.00	00	End Year	19	48	Min Max		0	Min Max		
	_														_
	Remove Duplica	ate Gages	F	Retrieve S	elected	Stations									
			_												
	STATIONS IN SE ENT RATIOS and al Data = 51	LECTED REG DISCORDAN	IONS ICY MEASU	IRES											*
	C		N7	-					** 10	-7500	DATA OT	ATTOTIC	· · · ·		
## StationID Station No	ume Unit	Gage #Dat	NONZEZ a #Data	MAP St	atus 1	Region	ALL-DATA MEAN	ThetaZ	MEAN	L-CV	L-SKEW	L-KURT	Discorda	ncy	
2 002 COCHTHUNZ	21	DI 41	L 39	107.9		2	59.2 45.7	0.049	45 7	0.812	0.329	0.157	1.29		
2 010 FL TRADICUE	21	DV 20	5 24	50 C		2	20.0	0.077	20.7	0.405	0.200	0 115	1 24		
4 011 HUANTA	EL.	DY 16	18	64 4	ő	2	29.9	0 000	29.9	0.531	0 444	0 344	0.90		
5 013 JUNTAS	RL	DY 16	5 14	113.6	0	1	52.3	0.125	59.7	0.500	0.366	0.178	0.29		
6 015 LA ORTIGA	EL	DY 26	26	160.8	ō	2	88.8	0.071	95.7	0.533	0.458	0.324	0.81		
7 014 LA LAGUNA EM	BALSE EL	DY 42	2 41	161.7	0	1	74.6	0.024	76.4	0.540	0.413	0.231	0.18		
8 021 LAS BURRAS	CH	DY 11	17	214.8	0	1	94.2	0.000	94.2	0.313	0.127	0.209	3.76*		
9 022 LAS RAMADAS	LI	DY 63	63	285.9	0	1	135.8	0.000	135.8	0.458	0.354	0.181	1.71		
10 023 LOS NICHOS	EL	DY 21	26	146.6	0	2	86.1	0.037	89.4	0.527	0.421	0.319	0.63		
11 26 MONTE GRANDE	EL	DY 44	42	75.7	0	2	44.2	0.045	46.3	0.592	0.468	0.250	1.01		=
12 027 OVALLE	LI	DY 34	33	111.2	0	2	60.6	0.029	62.5	0.468	0.298	0.058	2.08		
13 033 PISCO ELQUI	EL	DY 24	5 24	120.7	0	2	69.3	0.077	75.1	0.537	0.464	0.281	0.87		
14 037 RIVADAVIA	EL	DY 58	8 57	95.7	0	2	56.8	0.017	57.8	0.511	0.390	0.271	0.17		
15 042 TASCADERO	LI	DY 41	41	275.5	0	1	143.8	0.000	143.8	0.485	0.347	0.193	0.10		
16 044 VICUDA	EL	DY 31	L 30	100.2	0	2	57.1	0.032	59.0	0.471	0.314	0.225	0.24		-
Month(s) Selected: Jul - Sep															

Screen Shot 6-7a – Stations Selected for Selected Regions

L-RAP : ChileExampleData.RC	3A	Superior States of Concession, Name	of the second second		
<u>File Edit Tools H</u> elp					
D 🖻 🔿 🐰 🖬 🗞 🕅	0				
Control Data Management	Data Quality Scan Data	Filter Data Screening	Regional Analysis Quan	tile Estimates L-Moment Calculator	
Aggregate Data by Mo Start Month Number of Months to Aggre	gate 3 V			Print Report Windo	w
(Include Start Month)					
Select Climatic Regions	Select Stations Based on:	Mean Annual Precip	Min Non-Zero Record	enoth - USER 1 USER	R 3
Region 2	Select All Meter Types	Min 100	0.00	Min 0	Min
Region 3	Daily	Max 200	0.00 5		May 0
Region 5	Hourly				
Region 6	 Fischer Porter 	Latitude (Decimal Degrees) Start/End Years	USER 2 USE	R 4
	Synoptic	Min 0.0	000 Start Year	1948 Min 0	Min 0
		Max 0.0	000 End Year	2004 Max 0	Max 0
Select Regions					
	Remove Duplicate Gages	Detrieve Selecter	d Statione		
			d Stationa		
Tul/2 Months					
No Constraints on Minimum Record Ler All Gage Types Using Period of R No Constraints on No Constraints on No Constraints on No Constraints on 1	Selection of Latitude ugth = 4 acord for Stations User Meta Data 1 User Meta Data 2 User Meta Data 3 User Meta Data 4				
L-M	STATIONS IN SELECTED RE MENT RATIOS and DISCORDA	GIONS NCY MEASURES			
# Regio	onal Data = 212				
## StationID Station	Government Name Unit Gage #Da	NonZero ta #Data MAP Status	ALL-DATA Region MEAN The	** NON-ZERO DATA STATISTICS ** aZ MEAN L-CV L-SKEW L-KURT Dis	• cordancy
1 003 COCHIHUAZ	EL DY 1	8 18 107.9 0	2 45.7 0.0	00 45.7 0.469 0.268 0.188 1.4	2
2 013 JUNTAS	EL DY 1	6 14 113.6 0	1 52.3 0.1	25 59.7 0.500 0.366 0.178 0.2	0
4 014 LA LAGUNA H	EL DY 2 EMBALSE EL DY 4	2 41 161.7 0	∠ 88.8 0.0 1 74.6 0.0	/1 55.7 0.533 0.458 0.324 0.7 24 76.4 0.540 0.413 0.231 1.7	3
5 023 LOS NICHOS	EL DY 2	7 26 146.6 0	2 86.1 0.0	37 89.4 0.527 0.421 0.319 0.4	9
6 027 OVALLE	LI DY 3	4 33 111.2 0	2 60.6 0.0	29 62.5 0.468 0.298 0.058 1.7	0
7 033 PISCO ELQU: 8 044 VICUDA	EL DY 2 EL DY 3	6 24 120.7 0 1 30 100.2 0	∠ 69.3 0.0 2 57.1 0.0	// /5.1 0.537 0.464 0.281 0.6 32 59.0 0.471 0.314 0.225 1.0	1
		WEIGHT	Theta TED MEAN VALUES 0.0	Zero L-CV L-SKEW L-KURT 52 0.507 0.378 0.224	-
					-
Month(s) Selected: Jul - Se	0				

Screen Shot 6-7b – Stations Selected Meeting Selection Criteria

6-8 DATA SCREENING

The *Data Screening* tab provides functionality to conduct tests for serial independence and stationarity of the data series. There is also a feature for computing cross-correlation coefficients for the data series and producing a plot that describes the decay of cross-correlation with distance between stations. Lastly, there is a powerful station graphics tool that provides: a probability-plot of the data series; a time-series plot; an L-moment ratio diagram; and a histogram of the seasonality of maxima values. Each of these features is described in the following sections. The layout of the *Data Screening* screen is shown in Screen Shot 6-8.

The stations available for *Data Screening* are set through application of the *Data Filter*. The *Data Filter* must first be used to select stations for the *Data Screening* functions to become active.

6.8.1 Sequence of Actions for Data Screening Selecting Stations for Proposed Region

- Click on the *Compute Screening Statistics* button (Screen Shot 6-8) to generate the statistics for serial independence, stationarity and cross-correlation of the data series
- Click on *View Station Screen Plots* button (Screen Shot 6-8) to view the probability-plots, time-series plots, L-moment diagrams and seasonality histograms for the selected stations

🛃 L-RA	P : ChileExampleData.RGA	4					distant a	-	ALC: NAMES	ADDRESS AND ADDRESS.		
File	Edit Tools Help											
D 🖻	🔿 X 📮 🖻 🙈 🛛	0										
Contro	I Data Managomont	Data Qua	lity Scan	Data Filtor	Data Sorra	ning Por	tional Ana	lueie (Quantilo Fetimatoe	I-Moment Calculator	1	
Contro	Data Manayement		nty scan	Data i inter	Data Scree	ening Neg	ional Ana	lysis G	quantine Estimates	L-Woment Galculator	1	
Stat	ion Plots											
View	/ Station Screening Plots											
Con	npute Screening Statistic	s										
0.000	ute Connector Chate											
Com	bute Screening Stats									Print Re	eport Window	
											-	
	* ANA	LYSES OF :	SERIAL C	CORRELATION AND	STATION	ARITY *						
			SERIAI	CORRELATION		STATIONAR	ITY					
COUNT	STATION NAME	#DATA	Rho	Independence	Alpha	Beta	Rho	S TEST				
1	Almendral	39	-0.02	Pass	0.90	-0.0067	-0.096	Pass				
2	Cochihuaz	18	-0.14	Pass	1.07	0.0264	0.166	Pass				
3	El Trapiche	24	-0.14	Pass	0.97	-0.0045	-0.042	Pass				
4	Huanta	18	-0.11	Pass	1.01	0.0026	0.012	Pass				=
5	Hurtado	60	0.10	Pass	1.18	0.0065	0.109	Pass				
	Juntas	14	-0.28	Pass	1.00	0.0019	0.010	Pass				
	La Ortiga	20	-0.10	Pass	1.00	-0.0236	-0.178	Pass				
	La loguno Embolco	41	-0.10	Daga	1.00	0.0031	0.000	Daga				
10	La laguna Embaise	34	-0.13	Dees	1.05	-0.0109	-0.112	Dees				
11	Las Burras	17	-0.03	Daga	1 09	0.0265	0.252	Daga				
12	Las Damadas	63	-0.02	Dage	1 25	0.0100	0.208	Dage				
13	Los Nichos	26	0 10	Dage	0.69	-0.0416	-0.317	Dage				
14	Monte Grande	42	-0.22	Pass	1.09	0.0050	0.058	Pass				
15	Ovalle	33	0.02	Pass	0.97	-0.0024	-0.029	Pass				
16	Pabellon	36	0.05	Pass	1.21	0.0156	0.191	Pass				
17	Paloma Embalse	62	-0.03	Pass	1.08	0.0030	0.058	Pass				
18	Pichasca	58	0.09	Pass	1.20	0.0082	0.153	Pass				
19	Pisco Elqui	24	0.22	Pass	0.68	-0.0446	-0.354	Pass				
20	Punitaqui	39	-0.17	Pass	1.10	0.0060	0.080	Pass				
21	Recoleta Embalse	57	0.00	Pass	1.10	0.0040	0.078	Pass				
22	Rivadavia	57	0.12	Pass	1.05	0.0021	0.037	Pass				
23	Samo Alto	20	-0.04	Pass	2.23	0.0556	0.366	Pass				
24	Sotaqui	51	-0.12	Pass	1.00	0.0002	0.004	Pass				
25	Tascadero	41	-0.23	Pass	0.98	-0.0013	-0.019	Pass				Ψ.
Month	(s) Selected: Jul - Sep											

Screen Shot 6-8 – Layout of Screen for Data Screening Showing Report Created After Clicking the Compute Screening Stats Button

6-8.2 Serial Independence and Stationarity of Data Series

Statistical tests for serial independence and stationarity of the data series are standard tests that are conducted as part of the data screening process. The test for serial independence is conducted to confirm that the data series are serially independent, a required condition for conducting frequency analyses. The test for stationarity is conducted to confirm that there are no significant trends in the data over the period of observation with regard to central tendency. Both of these tests are conducted on the collection of stations, with the findings dependent on the behavior of the group of stations rather than on any particular station.

Serial Independence – The test for serial independence is conducted by computing a serial correlation coefficient (lag-1 auto-correlation coefficient) for the data series for each station. A global weighted-average serial correlation coefficient is then computed with the weightings based on the record length for each station. A standard t-test is conducted to examine if the global serial correlation coefficient is significantly different from zero. The null hypothesis is that the global serial correlation coefficient is zero for a sample size equal to the global average record length for the collection of stations. The results are displayed in the text view window (Screen Shot 6-8).

Stationarity – The test for stationary is conducted by first dividing each element of the data series at a station by the at-site mean and then subtracting 2000 from the year of occurrence. A time-series plot is then assembled and standard linear regression methods are used to compute an intercept and slope (Figure 6-1). A perfectly stationary sample would have an intercept value (Alpha) of 1.00 (at year 2000) and a slope (Beta) of zero over the period of record (Figure 6-1). This approach allows the regression parameters from all stations to be grouped for a statistical test for the global slope of the regression.

A global slope value is computed as a weighted-average of the slope values for each station weighted by record length. A standard t-test is conducted to examine if the global slope value is significantly different from zero. The null hypothesis is that the global slope value is zero for a sample size equal to the global average record length for the collection of stations. The results are displayed in the text view window (Screen Shot 6-8).

Figure 6-1 – Example of Plot Used for Test for Stationarity

6-8.3 Cross-Correlation of Data Series

One of the goals of a regional analysis is to use the collective information from a grouping of stations to improve the reliability of quantile estimates for all stations. The magnitude of improvement in quantile estimates for a regional analysis relative to at-site estimates is based inpart on the size of the regional dataset. If the data series for the stations used in the regional analysis are independent or have low cross-correlation, then the equivalent independent record length for the regional dataset is nearly equally to size of the regional dataset. Conversely, if the data series for the stations are highly cross-correlated, then the amount of information afforded by the regional dataset is much less that the size of regional dataset.

A plot of the decay of cross-correlation with distance between stations provides an approach to assessing the magnitude and behavior of cross-correlation between station data series. L-RAP produces a cross-correlation decay plot and provides a LOWESS fit (Cleveland²) to assist in a qualitative assessment of the level of cross-correlation (Figure 6-2).

All plots/graphics within L-RAP have the capability of being saved as jpg files for import into other documents. Hover the mouse over the upper right hand corner of each graphic to display icons for printing, copying, and saving of images. Just click on the icon for the desired action. Each of the graphics may be modified to better fit user needs. Titles may be changed along with labeling of the axes and plotting colors and symbols. Right click on the image to bring up the menus for altering the graphics.

Figure 6-2 – Example Plot of Decay of Cross-Correlation with Distance

6-8.4 Seasonality Statistics

Circular statistics (Fisher⁸) are appropriate for analysis of data that are circular or directional in nature. Months of the year, days of the year (dates), compass headings (wind direction) are all examples of circular data. For example, January (month 1) follows December (month 12). Arithmetic averaging of a group of numerical months or dates is not appropriate with conventional sample statistics because the counting system is circular not linear. In conducting the analysis of the seasonality of annual maxima or extreme storms, the Julian day of the year is used for describing the date of occurrence. The *average day of occurrence* is analogous to the arithmetic mean and the *seasonality index* (Dingman⁶) is analogous to a standardized measure of variation. Specifically, values of the seasonality index range from zero to unity with values near zero indicating wide variation in the dates of occurrence. A seasonality index near unity indicates low variation in the dates of occurrence and strong clustering of dates. Circular statistics for dates of occurrence using Julian day-of-year are computed as follows:

Conversion of Julian day-of-year to compass direction (ϕ_i):

$$\phi_i = 360 \left[J_i / Days_{total} \right] \tag{6-1}$$

Compute vectors for compass direction:

$$S = \sum_{i=1}^{n} P_{i} [sin(\phi_{i})]$$
 (6-2a)

$$C = \sum_{i=1}^{n} P_i [cos(\phi_i)]$$
 (6-2b)

Compute Average Day-of-Occurrence (Julian day-of-year J_{mean}):

$$\phi_2 = ArcTan(S/C) \tag{6-3a}$$

$$\phi_m = \phi_2 \qquad if \ S > 0 \ and \ C > 0 \qquad (6-3b)$$

$$\phi_m = \phi_2 + 180^{\circ}$$
 if C<0 (6-3c)

$$\phi_m = \phi_2 + 360^{\circ}$$
 if S<0 and C >0 (6-3d)

$$J_{mean} = 365 \ \phi_m \tag{6-3e}$$

Compute Seasonality Index (SI):

$$SI = SQRT(S^{2} + C^{2})/P_{total}$$
(6-4a)

$$P_{total} = \sum_{i=1}^{n} P_i \tag{6-4b}$$

where: J_i = Julian day-of-year for given date of interest; $Days_{total}$ is the total number of days in the current year; P_i is the data value for a given date (J_i) ; *n* is the total number of data and date pairs; and P_{total} is the sum of all data values for the dataset.

Screen Shot 6-9 shows an example output of seasonality statistics for annual precipitation data. The Seasonality report output is included with the Regional Analysis Report. Figures 6-3a,b,c depict examples of seasonality histograms for annual precipitation and associated circular statistics. Note that concentration of the data in several months results in a high value of the seasonality index, whereas data spread throughout the year results in a low value of the seasonality index.

	Seasonality	Report	aram Filos	\I.RAP\Datab	asa tut				
ID	STATION	GAGE	LATITUDE	LONGITUDE	 MAP	REGION		JULIAN MEAN DAY	SEASONAL RESULTS SEASONALITY INDEX
	Almondral				 an a		40	196	0 886
001	Cochibuaz		-30 142	-70 405	107 0	7	17	171	0.867
010	Fl Traniche		-29 374	-71 118	50 6	7	25	186	0 889
112	Hurtado		-30 287	-70 696	126 7	7	57	183	0.842
113	Juntas	DY	-29 977	-70.090	113 6	7	15	181	0.793
17	La Serena	DY	-29 907	-71 256	88 0	7	30	181	0.878
18			-30 617	-71 374	118 0	, ,	53	177	0 798
26	Monte Grande		-30.089	-70 /93	75 7	7	13	186	0.899
127	Ovalle		-30 601	-71 200	111 2	, ,	34	177	0.873
122	Dichago	DY	-30.303	-70 969	124 6	7	59	101	0.075
133	Pieco Floui		-30 122	-70 493	124.0	7	26	182	0.891
136	Pacalata Embalsa		-30 507	-71 100	113 8	, ,	55	177	0.856
130	Recoleta Empaise		-29 977	-70 561	45 7	7	57	189	0.850
138	Salamanca		-31 776	-70.967	258 8	, ,	31	181	0.070
20		DY	-20 410	-70 929	100 0	7	10	101	0.911
141	Sotami		-30.410	71 120	121 /	7	10	191	0.865
144	Vicuña		-30.051	-70 717	100 2	, ,	30	188	0 891
041 044	Sotaqui Vicuña	DY DY	30.631 -30.057 REGIONAL	71.120 -70.717 	121.4 100.2 FOR COL	7 7 LECTION	47 30 OF STATI	180 188 	
			WEIGHTED	STATS - MEAL	N			182.	0.864

Screen Shot 6-9 – Seasonality Statistics for Date of Maxima

Figure 6-3a – Seasonality Histogram and Circular Statistics for Annual Precipitation for La Serena, Chile

Figure 6-3b – Seasonality Histogram and Circular Statistics for Annual Precipitation for Chuqur, Peru

Figure 6-3c – Seasonality Histogram and Circular Statistics for Annual Precipitation for Arroyo Hondo, Argentina

6-8.5 Initial Assessment of Data Series for Data Quality

The station data screening tool provides the ability to quickly examine the behavior of data series. Upon clicking the *View Station Screening Plots* button, the user can toggle through the selected stations using the forward and reverse *Data Control* icons. For each station, a view is provided of the probability-plot, time-series plot, L-Moment Ratio Diagram and a seasonality histogram (Screen Shot 6-10). The user has the option of selecting the probability-plot to be drawn on Normal probability plotting paper or Extreme Value Type 1 plotting paper. The Normal probability plotting paper would be preferred for data series with low L-Skewness. The Extreme Value Type 1 plotting paper would be preferred for data series with moderate to large L-Skewness.

Screen Shot 6-10 - Graphical Analyses Available for Station Data Series

Data Quality Checking – One of the primary uses of the station screening tool is for data quality checking. Errors in the largest and smallest values in the data series would generally have the greatest effect on distorting L-moment sample statistics. Therefore, the probability-plot should be examined for each station and an assessment made of the general behavior (shape) of the plot with particular attention given to the largest and smallest values. Any of the largest or smallest values that markedly depart from the general shape of the plotted points should be subject to further examination. This is accomplished by reviewing the original data and looking for any

corroborating information from other sources. The goal is to confirm the validity of the recorded values. All values that are found to be valid are retained. All values that are found to be erroneous should be removed from the analyses by marking the value as negative and assigning an "R" data quality flag (see Section 6-5.4). Alternatively, if the correct data value can be determined, then edit the data series to provide the correct value and mark the data with a data quality flag of "E". A general guideline is that data values are considered innocent and retained unless proven to be erroneous and then removed.

The L-Moment Ratio Diagram can also be used to assist in identifying any L-Skewness and L-Kurtosis pairings that differ markedly from the other stations in the selected group of stations. In addition, any stations that were marked as discordant when the regions were selected during the *Data Filter* process should also be examined further to determine if there were any data errors that are the cause of the discordancy. Alternatively, the apparent unusual behavior may simply due to sampling variability and valid high or low outliers.

6-9 REGIONAL ANALYSES

Regional Analyses can be conducted after data series for all the stations have been examined and all data quality issues have been addressed. The Regional Analyses screen shows the data filter selection criteria that are in effect for those stations that were selected in the **Data Filter** step. The Regional Analyses is executed by Clicking on the *Perform Regional Analyses and Update Graphs* button (Screen Shot 6-11a). The numerical results are depicted in the view screen (Screen Shots 6-11b,c,d) and graphics are automatically displayed in a separate window (Screen Shot 6-12). For all graphics in L-RAP, right clicking on the graphic allows changes to be made in formatting the graphic, such as changing tiles, label axes, etc.

The numerical results include:

- For all stations, a listing is provided of: mixing parameter (θ); at-site mean; at-site L-Cv, at-site L-Skewness and L-Kurtosis, discordancy measure (*Di*).
- Regional solution of L-moment ratios weighted by record length.
- Heterogeneity measures H1, H2 and H3.
- Goodness-of-fit measures for all distributions and identification of distributions that are acceptably close to regional L-moment ratio solutions.
- Solution of distribution parameters for accepted probability distributions based on fitting to regional L-moment ratios.
- Quantile estimates for <u>non-zero values</u> for regional growth curve for those probability distributions identified as acceptably close to regional L-moments.

L-RAP : ChileExampleData.RGA														×
File Edit Tools Help													and the second se	
Control Data Management Data Cuali	te Canan	Data Filta	. 0.	ta Cara			. America la	Quantila	Estimate		lament C	alaulatan	1	
Control Data Management Data Quan	ly scan l	Data Fille	u Da	ta scree	ening K	egiona	I Analysis	Quantine	csumates	s L-IV	ioment ca	arculator	1	
Regional Analysis	Station S	election (riteria	Specifie	d on Data Fi	Iter Tal	b				1			
Perform Regional Analysis and	Regions:			1, 2										
Update Graphs	Mean Ann	nual Precip												
	Lat (Min/N	fax):												
	Minimum F	Record Ler	igth:											
	Start/End	Years:												
	Meter Typ	es		All M	leter Types									
Print Report Window											1			
STATIONS I	N SELECTE	D REGIO	NS											
L-MOMENT RATIOS	and DISC	ORDANCY	MEASUI	RES										-
<pre># Regional Data =</pre>	513													
			17				ALL DATA		** 10	N-ZEDO	DATA CO	DETETTO		
## StationID Station Name Un	it Gage	#Data	#Data	MAP :	Status Re	gion	MEAN	ThetaZ	MEAN	L-CV	L-SKEW	L-KURT	Discordancy	
1 001 ALMENDRAL E 2 003 COCHTHUAZ E	L DY L DY	41	39	90.9	0	2	54.2 45.7	0.049	45 7	0.512	0.329	0.157	0.71	
3 010 EL TRAPICHE E	L DY	26	24	50.6	ō	2	29.8	0.077	32.2	0.509	0.309	0.115	1.24	
4 011 HUANTA E	L DY	18	18	64.4	0	2	29.9	0.000	29.9	0.531	0.444	0.344	0.90	
5 013 JUNTAS E	L DY	16	14	113.6	0	1	52.3	0.125	59.7	0.500	0.366	0.178	0.29	
6 015 LA ORTIGA E	L DY	28	26	160.8	0	2	88.8	0.071	95.7	0.533	0.458	0.324	0.81	
7 014 LA LAGUNA EMBALSE E	L DY	42	41	161.7	0	1	74.6	0.024	76.4	0.540	0.413	0.231	0.18	
9 022 LAS BURRAS C		62	£2	214.0	0	1	125 0	0.000	125 0	0.313	0.12/	0.209	1 71	
10 023 LOS NICHOS E	L DY	27	26	146 6	ő	2	86.1	0.037	89.4	0.527	0.334	0 319	0.63	
11 26 MONTE GRANDE E	L DY	44	42	75.7	õ	2	44.2	0.045	46.3	0.592	0.468	0.250	1.01	
12 027 OVALLE L	I DY	34	33	111.2	õ	2	60.6	0.029	62.5	0.468	0.298	0.058	2.08	
13 033 PISCO ELQUI E	L DY	26	24	120.7	0	2	69.3	0.077	75.1	0.537	0.464	0.281	0.87	
14 037 RIVADAVIA E	L DY	58	57	95.7	0	2	56.8	0.017	57.8	0.511	0.390	0.271	0.17	
15 042 TASCADERO L	I DY	41	41	275.5	0	1	143.8	0.000	143.8	0.485	0.347	0.193	0.10	
16 044 VICUÑA E	L DY	31	30	100.2	0	2	57.1	0.032	59.0	0.471	0.314	0.225	0.24	
							т	ThetaZer		L-CV	L-SKEW	L-KURT		
11					WEIGHTED	MEAN	VALUES	0.034	-	0.502	0.368	0.217		
Month(s) Selected: Jul - Sep														

Screen Shot 6-11a – Layout of Regional Analyses Screen

L-RAP : ChileExampleData.RGA		A lot over 1 many 1 many 1 many	- C X
<u>File Edit T</u> ools <u>H</u> elp			
Control Data Management Data Qua	lity Scan Data Filter D	ata Screening Regional Analysis Quantile Estimates L-M	oment Calculator
	Station Calculian Calcula	President of Defa Filler Tele	
Regional Analysis	Station Selection Criteria	specified on Data Filter Tab	
Perform Regional Analysis and	Regions:	1, 2	
Update Graphs	Mean Annual Precip		
	Lat (Min/Max):		
	Minimum Record Length:		
	Start/End Years:	All Meter Types	
	Meter Types	All meter types	
Print Report Window			
			1
==== REGIONAL SC	OLUTIONS ====		
Weighted Average Record Leng	rth = 32.1		
Weighted Average Latitude =	-30.32 degrees		
Weighted Average Longitude =	= -70.60 degrees		
weighted Average Mean Annual	r Precipitation - 146.7		
Mixing Parameter Theta, Prop	portion of True Zeros =	0.032	
T M O M E N	ITS		
XBAR L2	L-CV L-SKEW L-KUR	T	-
1.000 0.5016 0.	5016 0.3682 0.217		
		71	
	-0.0146 -0.008	71 34 Bias Estimates 35 Final Estimates	
	-0.0146 -0.008 0.3829 0.225	21 84 Bias Estimates 55 Final Estimates	
	-0.0146 -0.008 0.3829 0.225	21 84 Bias Estimates 85 Final Estimates	
REGIONAL KAPPA	-0.0146 -0.008 0.3829 0.225 	71 94 Bias Estimates 55 Final Estimates	
======================================	-0.0146 -0.008 0.3829 0.225 	71 94 Bias Estimates 55 Final Estimates	
REGIONAL KAPPP 	-0.0146 -0.008 0.3829 0.225 	/1 94 Blas Estimates 55 Final Estimates	
POPULATION STIMATES FOR KAI STATIONS = 16 + STATI	-0.0146 -0.008 0.3829 0.225 	21 24 Bias Estimates 25 Final Estimates	
REGIONAL KAPPA Weight POPULATION ESTIMATES FOR KAI STATIONS = 16	-0.0146 -0.008 0.3829 0.225 	21 24 Bias Estimates 25 Final Estimates 2121	
REGIONAL KAPPA POPULATION ESTIMATES FOR KAI \$ STATIONS = 16 \$ STATI MEAN = 1.000 STANDARD DEV. = 1.11 STANDARD DEV. = 0.000	-0.0146 -0.008 0.3829 0.225 	21 94 Bias Estimates 55 Final Estimates 2121 0.7140 0.7140	
REGIONAL KAPPA Weight POPULATION ESTIMATES FOR KAI ‡ STATIONS = 16 ‡ STATI MEAN = 1.000 STANDARD DEV. = 1.10 STANDARD DEV. = 3.65 WUNDERF = 3.65	-0.0146 -0.008 0.3829 0.225 	21 34 Bias Estimates 35 Final Estimates 2121 0.7140 -0.7140 -0.732	

Screen Shot 6-11b – Regional Analyses Screen Showing Regional L-Moments

# SIIES - 20 # DAIA VALUES =	975.	
OBSERVED S.D. OF GROUP L-CV SIM. MEAN OF S.D. OF GROUP L-CV SIM. S.D. OF S.D. OF GROUP L-CV STANDARDIZED TEST VALUE	= 0.0385 = 0.0508 = 0.0073 = -1.68 Accept	
HETEROGENEITY MEASURE 500 Sin SITES = 26 ‡ DATA VALUES = OBSERVED AVE. OF L-CV / L-SKEW I SIM. MEAN OF AVE. L-CV / L-SKEW I SIM. S.D. OF AVE. L-CV / L-SKEW I SIADDADDIZED TSFV VALUE	H2 ====== ulations === 975. ISTANCE = 0.0505 ISTANCE = 0.0854 ISTANCE = 0.0114 = -3.05 Accept	
STRUCTURE TEST VALUE		

Month(s) Selected: Jul - Sep

Screen Shot 6-11d - Regional Analyses View Screen, Distribution Goodness-of-Fit Measures

.

=

Screen Shot 6-12 – Plots of L-Cv versus L-Skewness and L-Moment Ratio Diagram

6-10 QUANTILE ESTIMATES

The *Quantile Estimates* screen is used for computing distribution parameters and regional growth curves for seven probability distributions (Screen Shot 6-13a). The L-moments input boxes are populated with the results from the *Regional Analyses* tab. The *Quantile Estimates* screen is operated as follows:

- Select the probability distribution(s) for computing quantile estimates for developing regional growth curves.
- Click on the *Compute Quantile Estimates* button to compute distribution parameters and quantile estimates for the selected probability distributions. A graphic window will appear with plots of the regional growth curves (Screen Shot 6-13b).
- If interested in site-specific quantile estimates, change the mean value from 1.000 to the atsite mean of interest and click on the *Compute Quantile Estimates* button to recomputed quantile estimates.

File Edit Tools Help Control Data Management Data Guality Scan Data Filter Data Screening Regional Analysis Quantile Estimates L-Moment Calculator Regional L-Moments Compute and Piot Quantiles for Selected Distributions Generalized Logistic (GLog) Ceneralized Pareto (GPar) L-Cv 0.488 Compute and Piot Quantiles for Selected Distributions Mean 0.000 Ceneralized Logistic (GLog) Ceneralized Pareto (GPar) L-Kurosis 0.024 Generalized Logistic (GLog) Ceneralized Pareto (GPar) Pearson Type 3 (P3) Compute IPIot Quantiles compute Paretor Compute IPIot Quantiles compute Paretor Probability Generalized Normal (Morm) Kappa Distribution Parameter Non-Exceed GEV Gaucho Kappa Generalized Normal (Morm) Compute IPIot Quantiles compute Piot Quantiles GEV Gaucho Kappa Generalized Normal (Morm) Compute Piot Quantile Stribution Non-Exceed Generalized Normal (Morm) Generalized Normal (Morm) Generalized Normal (Morm) Compute Piot Quantiles Generalized Normal (Morm) Generalized Normal (Morm) Generalized Normal (Morm)								
Ontrol Data Management Data Quality Scan Data Filter Data Screening Regional Analysis Quantile Estimates L-Moment Calculator Regional L-Moments								
Data Management Data Quality Scan Data Filter Data Screening Regional Analysis Quantile Estimates L-Moment Calculator Regional L-Moments								
Regional L-Moments Compute and Plot Quantiles for Selected Distributions Mean 1.000 L-Cv 0.449 L-Skew 0.373 L-Kurtosis 0.214 Mixing Parameter (Proportion of Zero Values) 0.024 Distribution Location Scale Shape 2 Gev 0.5056 0.6031 -0.2234 Gaucho 0.3269 0.5056 0.6031 Gaucho 0.3269 0.5036 0.6034 Gaucho 0.3269 0.5036 0.6034 Kappa 0.1852 0.7537 -0.1430 0.7811 Mappa 0.1852 0.7537 -0.1430 0.7811 0.990 5.357 5.188 0.990 2.861 2.928 0.990 2.861 2.928 0.990 2.861 2.928 0.990 1.689 1.693 0.990 2.861 2.928 0.990 1.689 1.693 0.990 2.861 2.928 </td <td></td>								
Mean 1.000 L-Cv 0.498 L-Skew 0.373 L-Kurtosis 0.214 Wining Parameter (Proportion of Zero Values) 0.024 Distribution Location Scale 5 hape 1 0.620 0.0233								
L-Cv 0.498 L-Skew 0.373 L-Kurtosis 0.214 Mixing Parameter (Proportion of Zero Values) 0.024 Quantile Values by Distribution Distribution Parameter (Proportion of Zero Values) 0.024 Outpute/Plot Quantiles Distribution Scale Shape 1 Non-Exceed Probability GEV Gaucho Kappa 0.5269 0.6380 -0.2934 0.999 11.713 10.031 Gaucho 0.3269 0.6380 -0.2964 0.999 5.337 5.188 Caucho 0.3269 0.6380 -0.2964 0.999 5.337 5.188 Caucho 0.3269 0.6380 -0.2964 0.999 5.337 5.188 0.990 5.337 5.188 - - 0.980 3.143 3.199 0.990 2.061 2.928 - - 0.980 2.861 2.928 0.900 2.065 0.1433								
L-Skew 0.373 L-Kurtosis 0.214 Mixing Parameter (Proportion of Zero Values) 0.024 Distribution Parameter (Proportion of Zero Values) 0.024 Distribution Location Scale Shape 1 Shape 2 Cuantile Calues by Distribution GeV 0.5066 0.5031 -0.2934								
L-Kurtosis 0.214 Mixing Parameter (Proportion of Zero Values) 0.024 Pearson Type 3 (P3) Compute/Plot Quantiles Compute/Plot Quantiles Compute/	Generalized Normal (GNorm)							
Mixing Parameter (Proportion of Zero Values) 0.024 Compute/Plot Quantiles 0 <t< td=""><td></td></t<>								
Distribution Location Scale Shape 1 Shape 2 Non-Exceed Probability GEV Gaucho Gaucho Kappa Gaucho 0.3269 0.6380 -0.2064 0.999 11.713 10.031 Kappa 0.1852 0.7531 -0.1430 0.7812 0.999 5.357 5.188 USUNCE USUNCE USUNCE 0.9660 0.999								
Non-Exceed Probability GEV Gaucho Kappa GEV 0.506 0.503 -0.293 -0.143 -0.293 -0.143 -0.293 -0.143 -0.293 -0.143 -0.143 -0.293 -0.14								
GEV 0.5066 0.5031 -0.2934 0.3999 11.713 10.031 Gaucho 0.3269 0.6380 -0.2064 0.998 9.333 8.325 Kappa 0.1852 0.7531 -0.1430 0.7812 0.998 9.333 8.325 Kappa 0.1852 0.7531 -0.1430 0.7812 0.999 6.844 6.6413 Kappa 0.1852 0.7531 -0.1430 0.7812 0.999 5.357 5.188 Kappa 0.1852 0.7531 -0.1430 0.7812 0.999 5.357 5.188 Kappa 0.1852 0.7531 0.1430 0.1431 3.199 0.0111 Kappa 0.900 0.2065 0.2065 0.1652 1.171 Kappa 0.1750 1.1243 1.170 1.171 Kappa 0.650 0.966 0.974 1.171	_							
Gaucho 0.3269 0.6380 -0.2064 0.998 9.333 8.325 Kappa 0.1852 0.7531 -0.1430 0.7812 0.999 6.844 6.6413 Kappa 0.1852 0.7531 -0.1430 0.7812 -0.999 5.357 5.188 Kappa V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.V.	9.013							
Kappa 0.1852 0.7531 -0.1430 0.7812 0.995 6.844 6.6413 0.990 5.357 5.188 <td< td=""><td>7.682</td></td<>	7.682							
0.990 5.357 5.188 0.980 4.141 4.124 0.960 3.143 3.199 0.950 2.861 2.928 0.990 2.086 2.155 0.990 1.632 1.147 0.900 2.086 2.155 0.900 1.632 1.747 0.850 1.632 1.270 0.750 1.243 1.270 0.700 1.092 1.108 0.650 0.968 0.974	6.114							
0.980 4.141 4.124 0.960 3.143 3.199 0.950 2.861 2.928 0.950 2.861 2.928 0.950 2.861 2.928 0.950 2.861 2.928 0.950 2.861 2.928 0.950 2.861 2.928 0.950 1.692 1.747 0.850 1.433 1.474 0.750 1.243 1.270 0.750 1.243 1.270 0.650 0.958 0.974 0.650 0.966 0.974	5.057							
0.960 3.143 3.199 0.950 2.861 2.928 0.900 2.086 2.155 0.900 2.086 2.155 0.850 1.692 1.747 0.850 1.433 1.474 0.750 1.243 1.270 0.750 1.092 1.108 0.660 0.968 0.974	4.099							
0.950 2.861 2.928 0.900 2.086 2.155 0.850 1.692 1.747 0.850 1.433 1.474 0.750 1.243 1.270 0.750 1.092 1.108 0.650 0.968 0.974	3.230							
0.900 2.086 2.155 0.850 1.692 1.747 0.800 1.433 1.474 0.750 1.243 1.270 0.700 1.092 1.108 0.650 0.968 0.974	2.967							
0.850 1.692 1.747 0.800 1.433 1.474 0.750 1.243 1.270 0.700 1.092 1.108 0.650 0.968 0.974	2.201							
0.800 1.433 1.474 0.750 1.243 1.270 0.700 1.092 1.108 0.650 0.968 0.974 0.600 0.861 0.858	1.785							
0.750 1.243 1.270 0.700 1.092 1.108 0.650 0.968 0.974 0.600 0.861 0.858	1.502							
0.700 1.092 1.108 0.650 0.968 0.974 0.660 0.861 0.858	1.289							
0.650 0.968 0.974	1.119							
0.600 0.861 0.858	0.978							
	0.856							
0.550 0.767 0.757	0.750							
0.500 0.682 0.667	0.656							
0.450 0.504 0.524	0 571							

Screen Shot 6-13a – Layout of Quantile Estimates Screen

Screen Shot 6-13b – Regional Growth Curves for Selected Probability Distributions

6-11 L-MOMENT CALCULATOR SCREEN

The *L-Moment Calculator* screen provides an easy method of computing L-moments for a single data series and viewing the resultant graphics for the data series (Screen Shot 6-14a). The calculator functions independently of the data and analyses performed on other tabs of the program. The supported operations are:

- The data series input screen is opened by clicking the *Open Data Entry Form* button. Data series may be entered by hand or by cut-and-past from another application such as Excel (Screen Shot 6-14b). Text associated with the Station Name and Data Label will be displayed on frequency and time series graphs described below. If the data to be analyzed is not a time series, i.e., does not have a corresponding date for each data point, uncheck the *Include Date Field* box.
- Once the data has been entered, click the *Save/Close* button.
- Clicking on the *Compute L-Moments* button returns the at-site sample L-moments to the text boxes on the L-Moment Tab.
- Use a checkmark to select the probability distribution(s) for computing quantile estimates for the data set.
- Clicking Compute/Plot Quantiles provides a probability-plot, time-series plot, L-moment diagram, and seasonality histogram for the data series in a separate graphics window (Screen Shot 6-14c).

🛃 L-RAP : ChileExampleData.RGA	
File Edit Tools Help	
D 🚅 🛃 🗼 🛃 🖻 🐔 🞯	
Control Data Management Data Quality Scan Data Fil	ter Data Screening Regional Analysis Quantile Estimates L-Moment Calculator
Open Data Entry Form	
Compute L Momente using Station Data	
L-Moments	Compute and Plot Quantiles for Selected Distributions
L-Cy 0.220	Generalized Logistic (GLog) Generalized Pareto (GPar) Generalized Extense Maker (GE) Generalized Pareto (GPar)
L-Skew 0.154	Generalized Extreme Value (GEV) Gaucho
	Pearson Type 3 (P3)
Mixing Parameter (Proportion of Zero Values) 0.00	Compute/Plot Quantiles
Distribution Parameters	Quantile Values by Distribution
Distribution Location Scale Shape Shape 2	on-Exceedanc Generalized GEV Generalized Pearson Generalized Pareto Gaucho Kappa
	1
Month(s) Selected: Jul - Sep	

Screen Shot 6-14a – Layout of At-Site Computations Screen

📄 At Sit	te Station Data. Enter Data or Copy from Excel		
Paste	Save/Close Cancel 🔽 Include Date Field		
Station N	ame: Whiskeytown		
Data Lab	el: Precipitation		
	Date or Year	Data Value	-
1	11/24/1896	9.25	
2	2/8/1898	4.96	
3	3/24/1899	11.35	
4	10/22/1899	12.75	_
5	1/6/1901	7.91	
6	12/5/1901	5.66	
7	1/27/1903	12.33	
8	2/24/1904	16.21	
9	1/13/1906	12.65	
10	3/19/1907	14.39	
11	12/28/1907	5.29	
12	1/16/1909	11.59	
13	1/16/1913	8.33	
14	1/1/1914	6.06	
15	5/12/1915	8.24	
16	11/24/1926	7.39	
17	3/26/1928	12.18	
18	6/17/1929	3.86	•

Screen Shot 6-14b – Station Data Input Screen for L-Moment Calculator

Screen Shot 6-14c – Graphics Window for At-Site Computation of L-Moments for Site-Specific Data Series